The Descriptive Complexity Approach to LOGCFL
نویسندگان
چکیده
Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach’s “hardest context-free language” is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.
منابع مشابه
Computing LOGCFL certi#cates
The complexity class LOGCFL consists of all languages (or decision problems) which are logspace reducible to a context-free language. Since LOGCFL is included in AC, the problems in LOGCFL are highly parallelizable. By results of Ruzzo (JCSS 21 (1980) 218), the complexity class LOGCFL can be characterized as the class of languages accepted by alternating Turing machines (ATMs) which use logarit...
متن کاملDerandomizing Isolation in Space-Bounded Settings
We study the possibility of deterministic and randomness-efficient isolation in space-bounded models of computation: Can one efficiently reduce instances of computational problems to equivalent instances that have at most one solution? We present results for the NL-complete problem of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance on shallow semi-unbounde...
متن کاملTheoretically Optimal Datalog Rewritings for OWL 2 QL Ontology-Mediated Queries
We show that, for OWL 2 QL ontology-mediated queries with (i) ontologies of bounded depth and conjunctive queries of bounded treewidth, (ii) ontologies of bounded depth and bounded-leaf tree-shaped conjunctive queries, and (iii) arbitrary ontologies and bounded-leaf tree-shaped conjunctive queries, one can construct and evaluate nonrecursive datalog rewritings by, respectively, LOGCFL, NL and L...
متن کاملRestricted Space Algorithms for Isomorphism on Bounded Treewidth Graphs
The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded tree distance width are known to be solvable in polynomial time [2],[19]. We give restricted space algorithms for these problems proving the following results: • Isomorphism for bounded tree distance width graphs is in L and thus complete for the class. We also show that for this kind of graphs a canon can be com...
متن کاملMaking Nondeterminism Unambiguous 1
We show that in the context of nonuniform complexity, nondeterministic logarithmic space bounded computation can be made unambiguous. An analogous result holds for the class of problems reducible to context-free languages. In terms of complexity classes, this can be stated as: NL/poly = UL/poly LogCFL/poly = UAuxPDA(log n; nO(1))/poly
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 62 شماره
صفحات -
تاریخ انتشار 1998